Upcoming WebCAST seminar entitled: "The Role of Process Systems Engineering in the Quest for the Artificial Pancreas" By Professor Francis J. Doyle III Duncan and Suzanne Mellichamp Chair in Process Control Department of Chemical Engineering University of California, Santa Barbara Date: Monday, September 28, 2009, 1-3 pm (EST) Dial-in from the comfort of your office to hear the presentation Deadline to Register: September 20, 2009 (details at http://www.castdiv.org/WebCAST.htm) Abstract Type 1 diabetes mellitus is a disease characterized by complete pancreatic beta-cell insufficiency. The only treatment is with subcutaneous or intravenous insulin injections, traditionally administered in an open-loop manner. Patients attempt to mimic normal physiology in order to prevent the complications of hyper- and hypoglycemia (elevated glucose levels, and low glucose levels, respectively). Even minor glucose elevations increase the risk of complications (retinopathy, nephropathy, and peripheral vascular disease). In recent years, sensors and pumps have become available that show great promise for a closed-loop artificial pancreas -- however the crucial missing component is the algorithm to connect the devices. In order to normalize the glucose levels of insulin dependent, type 1 diabetic patients, the algorithms for the development of an artificial pancreatic islet need to exploit all the measured variables that the normal islet insulin secretion utilizes and quickly increase or decrease the insulin secretory. Our group has been working on model-based control algorithms for pump control over the last 17 years; with clinical evaluations over the last 7 years in collaboration with the Sansum Diabetes Research Institute. Our investigations have addressed the critical algorithmic elements of: model identification, disturbance estimation, model predictive controller design, event detection, monitoring & alarming, and optimization solution. In this talk, we present our most recent computational and clinical results in pursuit of the artificial beta cell. Our novel contributions include the model formulation, meal detection & estimation schemes, efficient programming formulation, and the use of insulin-on-board constraints to ensure safety. Bio-Sketch: Professor Francis J. Doyle III http://www.thedoylegroup.org Dr. FRANCIS J. DOYLE III is the Associate Dean for Research in the College of Engineering at UC, Santa Barbara and he is the Associate Director of the Army Institute for Collaborative Biotechnologies. He holds the Duncan and Suzanne Mellichamp Chair in Process Control in the Department of Chemical Engineering, as well as appointments in the Electrical Engineering Department, and the Biomolecular Science and Engineering Program. He received his B.S.E. from Princeton (1985), C.P.G.S. from Cambridge (1986), and Ph.D. from Caltech (1991), all in Chemical Engineering. Prior to his appointment at UCSB, he has held faculty appointments at Purdue University and the University of Delaware, and held visiting positions at DuPont, Weyerhaeuser, and Stuttgart University. He is the recipient of several research awards (including the NSF National Young Investigator, ONR Young Investigator, Humboldt Research Fellowship) as well as teaching awards (including the Purdue Potter Award, and the ASEE Ray Fahien Award). He is currently the editor-in-chief of the IEEE Transactions on Control Systems Technology, and holds Associate Editor positions with the Journal of Process Control, the SIAM Journal on Applied Dynamical Systems, and Royal Society’s Interface. In 2005, he was awarded the Computing in Chemical Engineering Award from the American Institute of Chemical Engineers for his innovative work in systems biology. His research interests are in systems biology, network science, modeling and analysis of circadian rhythms, drug delivery for diabetes, model-based control, and control of particulate processes. -- Mayuresh V. Kothare R. L. McCann Professor Chemical Process Modeling and Control Research Center Department of Chemical Engineering Lehigh University, D322 Iacocca Hall 111 Research Drive, Bethlehem, PA 18015, U.S.A. Tel: (610) 758 6654; Fax: (610) 758 5057 e-mail: [log in to unmask] URL: http://www.lehigh.edu/~mvk2