Subject: WebCAST Seminar by Floudas on May 7, 2013 WebCAST seminar on “Multi-scale Approaches for Optimizing Novel Hybrid Feedstock Energy Processes” by Christodoulos A. Floudas Department of Chemical and Biological Engineering Princeton University Date: May 7, 2013, 2-4 pm (EDT) Dial-in from the comfort of your office to hear the presentation. Deadline to Register: May 3, 2013 (details at www.castdiv.org/WebCAST.htm) This is a joint CAST / CACHE initiative. The registration rate is: • free for the first 100 CAST members and CACHE departments (including industrial affiliates) • for all others, $25/connection. Joining the CAST Division of AIChE only costs $10/year.] Abstract: Heavy dependence on petroleum and high greenhouse gas (GHG) emissions from the production, distribution, and consumption of hydrocarbon fuels pose serious challenges for the United States (US) transportation sector. Depletion of domestic petroleum sources combined with a volatile global oil market prompt the need to discover alternative fuel-producing technologies that utilize domestically abundant sources. The primary aim in the discovery of hybrid energy processes is to combine coal, biomass, and natural gas to meet the United States transportation fuel demand. The first part of this presentation will outline the needs and introduce novel hybrid feedstock coal, biomass, and natural gas to liquids (CBGTL) process alternatives. The second part will address important decisions at the process design and process synthesis level. A thermochemical based process superstructure, its mixed-integer nonlinear optimization (MINLP) model, and systematic approaches for its global optimization will be discussed. The third part will introduce a novel framework for the optimal energy supply chain of CBGTL processes. The optimal network topology provides information on (i) the optimal plant locations throughout the country, (ii) the locations of feedstock sources, (iii) the interconnectivity between the feedstock source locations, CBGTL plants locations, and the demand locations, (iv) the modes of transportation used in each connection, and (v) the flow rate amounts of each feedstock and product type. Life cycle analysis on the nationwide energy supply chain shows that at least 50% reduction of GHG emissions is attainable. Biographical Sketch: Dr. Floudas is the Stephen C. Macaleer ’63 Professor in Engineering and Applied Science, Professor of Chemical and Biological Engineering at Princeton University, Faculty in the Center for Quantitative Biology at Princeton University’s Lewis-Sigler Institute, Associated Faculty in the Program of Computational and Applied Mathematics at Princeton University, Department of Operations Research and Financial Engineering at Princeton University, and the Andlinger Center for Energy and the Environment. He earned his B.S.E. in 1982 at Aristotle University of Thessaloniki, Greece, completed his Ph.D. in December 1985 at Carnegie Mellon University. Professor Floudas is the author of two graduate textbooks, Nonlinear Mixed-Integer Optimization (Oxford University Press, 1995), and Deterministic Global Optimization (Kluwer Academic Publishers, 2000). He has co-edited ten monographs/books, has over 270 refereed publications, and is the chief co-editor of the Encyclopedia of Optimization (Kluwer Academic Publishers, 2001; 2nd edition, Springer, 2008). He is the recipient of numerous awards and honors for teaching and research that include the NSF Presidential Young Investigator Award, 1988; the Engineering Council Teaching Award, Princeton University, 1995; the Bodossaki Foundation Award in Applied Sciences, 1997; the Best Paper Award in Computers and Chemical Engineering, 1998; the Aspen Tech Excellence in Teaching Award, 1999; the 2001 AIChE Professional Progress Award for Outstanding Progress in Chemical Engineering; the 2006 AIChE Computing in Chemical Engineering Award; the 2007 Graduate Mentoring Award, Princeton University; and Member of National Academy of Engineering, 2011.